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ABSTRACT

This paper presented how to partition a network in a number of zones. Once a zone has 
been determined first node to end node, it is time to decide on the location of stationary 
facilities within the zone. Location decisions belong to the node and it depends on the type 
of service being offered. In some cases, the imperative concern is to minimize the average 
distance or the facilities for the population. Approaches to location and models for applying 
location policy, two major classes of considerations are highly instrumental in selecting 
an approach to solving; this concern is usually dominant for cases such as locating a post 
office, a transportation terminal, or an office of a government agency. One class relates 
to management objectives, the other class is concerned with the nature of the demand for 
services and nature of the service provided.
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INTRODUCTION

In a service network, particularly in emergency services, the worst case would be the 
maximum shortest distance between a node and the closest facility. An attempt to minimize 
the maximum distance assures that in the worst case the response time would not exceed the 
value obtained by the optimal solution. The general term for models striving to minimize 
a maximum value is minimal. The class of problems related to location on network is 
called center problem. Center problems can be classified into two groups by distinguishing 
between one-facility and multiple-facility problems. Thus, we define a one-center problem 
(Baker, 1974) to be a limited problem, where only one stationary facility is to be positioned, 

whereas a p-center problem is the more 
general case where the number of facilities 
is not restricted to one. Unlike median 
problems, in center problems there is no 
equivalence to Hakimi’s theorem that allows 
us to confine (Hall, 2009). Therefore, the 
number of candidate locations is potentially 
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infinite. Management, however, may opt to restrict the solution only to nodes for 
administrative and logistic reasons. Center problems where the solution is constrained to 
reside on nodes are labeled nodal center problems. The unconstrained problems are called 
absolute center problems.

THE ONE NODAL CENTRE PROBLEM

The one nodal-center problem deals with locating one stationary facility on a network 
so as to minimize the maximum distance between the facility and the network nodes, 
however, the facility must be located on a node. Constraining the location to a node makes 
the solution very simple. All that we have to do is to examine the shortest distance matrix, 
mark the maximum and then select the node where the marked. The network G1 in Figure 
1 this number indicates maximum distance a server would have to travel had the stationary 
facility been located in the node corresponding to that column. If the facility is located at 
either node 3 or node 5, the maximum distance would be 5, and this is the best that we can 
get. So the solution to the one-nodal-center problem is to position the stationary facility 
either at node 3 or at node 5(Beckman, 1981).
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Figure 1. Sample Network G1

THE ONE ABSOLUTE CENTRE PROBLEM

When the optimal solution is not restricted to residing on a node, problem becomes more 
complicated since now there are many points which may be candidates to inhabit the 
stationary facility. This procedure for solving the problem undergoes a number of steps, 
in each step points on only one link of the network are examined for a possible optimal 
location (Hallpern & Maimon, 2011). Finally, the best location among all the links is 
selected. Let us demonstrate how the algorithm operates on G1 of Figure 1. Select any link 
of G1, say between nodes 2 and 1. The length is 5 units. Let us place a hypothetical facility 
at point X on the link, and examine the distance between the facility and any node of G1. 

Let us consider that the facility is located at a distance x from node 2.
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The distance functions between node 1 and point X is 5 - x.  The distance between node 
2 and point X is simply x. We have combined graph drawn in bold shows the maximum 
distance from point X to any of the nodes 1 and 2.Suppose our problem was to find the 
one-center location for a simple case of a network consisting of nodes 1 and 2 only. The 
least tolerable among all the “worst cases” would be the bottom of the bold line, namely, 
at point x = 2.5. The bold is called the upper envelope of the graph (in shorts the envelope) 
and the optimal solution is at the lowest point of the envelope. Unfortunately, the network 
G1 is more involved so we have to extend the search. Let us examine the distance between 
points on link (2, 1) and node 3. If the facility is located at node 2, the shortest distance 
to node 3 would be 3 units. When we move point X along the link, the shortest distance 
(Berman & Odoni, 1982) function becomes 3 + x. However, stops when X reaches 3 units 
from node 2, because at that point it is better to approach node 3 via node 1. The distance 
function X to 3 becomes 9 – x, where 9 is the sum of the distance of links (2, 1) and (1, 3), 
and x is the distance of point X from node 2. The complete distance function is given by

			   (1)

The distance functions to nodes 1 and 2 with the distance to node 3. The new envelope 
is now drawn in bold. It describes the maximum shortest distance to nodes 1, 2 and 3, 
depending on the location of facility. The minimum among the shortest distances is obtained 
when the facility is placed on point x = 1, namely, 1 unit of distance from node 2. The 
maximum value of the maximum shortest distance would be 4. We proceed to inquire about 
the distance functions between points of link (2, 1) and all the nodes of the network G1. 
The final envelope for (2, 1) is shown in Figure 2 the lines designating node numbers with 
which the function are associated. The distance function associated with node 5 contains 
all the other functions. Therefore, it solely constitutes the envelope for link (2, 1). In other 
cases, however, the envelope may certainly be composed of segments of various functions. 
Anyway, the best point on this envelope is at x = 0, yielding a minimum of 8 distance units. 
This point is called the local center of link (2, 1).We now have to repeat the same process 
for each link of G1. The process might become somewhat tiring (Camerini et al., 1983). 
However, there is a way to save some calculations. The location of the nodal center of 
G1, that is at node 3 with maximum distance of 5 units. Suppose we wish to examine the 
candidacy of a certain link m(a, b). This inspection is aided by the condition expressed by:

 (j*)
2

),()()( mbabmam
≥

−+ 
			   (2)

Where m (a) is the maximum distance between node a and any node network; m (b) 
is the maximum between b and any node; ),( ba  is length of the link (a, b) and m (j*) is 
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the maximum distance for the one nodal-center problem. If condition (2) holds, there is 
no potential improvement beyond the one-nodal-center and the link can be skipped. Let 
us examine, for instance, link (5, 6). We have the maximum distance from node 5 is 5, i.e. 
m (5) = 5 for node 6, m (6) = 9. The link length is 4 substituting into (2).

5 9 4
2

5 5+ −
= ≥

Consequently, link (5, 6) does not have to be examined. Let us now perform this 
inspection for all the links (Table 1).

Link skip( , )1 2 9 8 5
2

6 5=
+ −

= > 	 skip

Link skip( , )1 3
9 5 4

2
5 5=

+ −
= ≥ 	 skip

Line skip( , )2 3 8 5 3
2

5 5=
+ −

= ≥ 	 skip

Link skip( , ) .2 4 8 7 2
2

65 5=
+ −

= > 	 skip

Link exa e( , ) . min3 5 5 5 1
2

4 5 5=
+ −

= < 	 examine

Line exa e( , ) . min4 5 7 5 3
2

4 5 5=
+ −

= < 	 examine

Link skip( , )4 6 7 9 6
2

5 5=
+ −

= ≥ 	 skip

Link skip( , )5 6 5 9 4
2

5 5=
+ −

= ≥ 	 skip

We are left with only two links to examine this is a significant reduction of the work.
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Figure 2. A Sample Network G2
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CLASSIFICATION OF LOCATION MODELS

In other cases, the average distance is considered less important than the maximum distance. 
Such cases are more relevant to issues of equity, where management would not like to 
deprive any portion of the population, even when this portion is small and remote. In such 
cases, management will strive to minimize the maximum distance between a potential 
user and all the location of service provider. This objective pertains mostly to emergency 
services such as ambulance, firefighting, or utility repair service. Model dealing with this 
type of objective are called center problems (Church & Garfinkel, 1978). In Figure 1 
some cases, management would attempt to fulfil exactly the opposite objective, that is, to 
maximize the minimum distance between residential communities and a certain facility. 
The number of facilities to be located may also become subject to management policy. 
In some cases, the number of facilities is set prior to many location decisions. Then the 
objective would be to minimize either one of the above functions, for a given number of 
facilities. In other cases, management may set a certain performance level to be a target, 
and then seek to minimize the number of facilities to be located and to determine their 
locations, provided that the required performance is definitely met. This latter approach 
is often called a requirement problem. So for, we have classified location problems only 
in light of management objective. There is another class of considerations, namely, 
those related to the nature of the demand and the service. Neither demand nor service is 
deterministic, but rather they behave in a probabilistic manner. There are cases where we 
have to account for the stochastic nature of the system. This is particularly true when the 
servers are mobile service units and the major concern is not the travel time, but the system 
response time, that is, the time lapsed from an initiation of a request until a service unit 
arrives at the scene of call. The response time is highly affected by the distribution of the 
rate of calls and the service time (Hall, 2009). Models dealing with stochastic cases are 
called stochastic location problems. Such models allow for congestion, namely, queues 
can be generated and should be accounted for in the model.

Table 1 
Shortest distance for G1

To
From 1 2 3 4 5 6
1 0 5 4 7 5 9
2 5 0 3 2 4 8
3 4 3 0 4 1 5
4 7 2 4 0 3 6
5 5 4 1 3 0 4
6 9 8 5 6 4 0
Maximum Distance 9 8 3 7 5 9
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ONE-MEDIAN PROBLEM

We discussion of location problem by presenting a very simple case of the one-median 
problem. The median problem in general deals with identifying locations for stationary 
facilities such that the average shortest distance from a node to the nearest facility would 
be minimized. The one median problem is, therefore, a reduction of the general median 
problem to case where only a single facility is to be located. The number of possible 
locations is infinite since the location of the facility is not necessarily limited to nodal 
locations (Dearing & Francis, 1974). We have to do, therefore, is to calculate the average 
distance for each alternative location and then select the node yielding the least value. A tree 
is connected network without loops (cycles). A path should exist between any two nodes 
of a tree, but this path is unique. A natural example of tree is a revere network. When we 
wish to locate a single stationary facility on a tree, we may use a special algorithm. Here 
we will demonstrate the algorithm on T1 in Figure 3.
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Figure 3. A Sample tree-type Network T1

THE P- MEDIAN PROBLEM	

Let us suppose a number of facilities say p, are to be located on a network. In order to solve 
this problem, we have to make one additional assumption a request for service will always 
be served by the closest facility. Under this assumption, we would like to find a set of points 
on the set of points on the network such that the average shortest distance between any node 
of the network and the closest facility would be minimized. When a server as dispatched 
to a calling node as well as when a customer has a travel to a facility (Goldman, 1971). 
The search for an optimal set of p location may be confined only to nodes of the network. 
Hence, one way to solve the problem is simply by enumerating all the possible subset p 
nodes and calculating the shortest distance between any node and its closest facility. We 
assume that travel times are deterministic, and service capacity is infinite. Suppose we 
place the stationary facility at point X on the link connecting node 1 and 2. 
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Assume that x is the distance between node 1 and the location of the stationary facility. 
The weighted average distance (or time) t, the server will have to travel to the nodes is 
given by.  

			   (3)

The value of the first part of (3) is constant; it does not depend on the location of X. 

THE P-CENTRE PROBLEM

The p-center problem is a natural extension of the one-center problem. The objective now 
is to locate p stationary facilities on a network such that the maximum shortest distance 
from any node to the closest facility is minimized. The algorithm for this problem is much 
more involved than that of the one-center problem. 

Let G2 be a service network portrayed in Figure 2 G2 consists of three nodes and three 
links. Suppose it is desired to locate two facilities on the network such that the maximum 
distance from a node link to the closet facility is minimized (Goldman & Witzgall, 1971). 
Before getting to the search for optimal points, we would like first to identify the entire 
midpoint on each. A midpoint is a point on a link (1, 2) where the distance from this point to 
a certain node 1 is equal to the distance from the same point to another node 2. For example, 
the point located 5 units away from node 2 on link (2, 3) is a midpoint with regard to nodes 
1 and 2, since it takes 2 units of distance to travel from this point to node 1 or to node 2. 

CONCLUSION

The reason for the intensive search of midpoints is that an optimal solution for the p-median 
problem exists on midpoints. A great advantage of p-median problem is that the search 
for a solution can be confined to a finite identifiable set of locations. It was assumed that 
the number of facilities to be located is predetermined, and management objective is to 
minimize a certain performance measure. The performance measure is set ahead, and 
management wishes to minimize the number of stationary facilities that conforms to the 
imposed. We have successfully obtained all the midpoints, the shortest distance matrix of 
every node and every midpoint using proposed algorithm. 
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